

Database Management System (DBMS)

NCS-552

Lab Manual

Prepared by:

Dr. Avdhesh Gupta
Mr. Vivek Jain

Department of Computer Science & Engineering

IMS Engineering College, Ghaziabad

Evaluation Scheme

NCS 552 DBMS Lab

Objectives:-

1. Installing oracle.

2. Creating Entity-Relationship Diagram using case tools.

3. Writing SQL statements Using ORACLE /MYSQL:

a. Writing basic SQL SELECT statements.

b. Restricting and sorting data.

c. Displaying data from multiple tables.

d. Aggregating data using group function.

e. Manipulating data.

f. Creating and managing tables.

4. Normalization in ORACLE.

5. Creating cursor in oracle.

6. Creating procedure and functions in oracle.

7. Creating packages & triggers in oracle

Content Beyond Syllabus:

1. Index / Sequences

2. PL/SQL

3. Few Syntaxes of Database Administration (ORACLE)

4. MS-Access

Applications:

1. A database application is a computer program whose primary purpose is entering and
retrieving information from a computerized database. Relational database management
systems (RDMS) will typically provide a series of tools for creating tables, conducting
searches, producing printed reports, With a complicated database, however, it is usual for
a database application to be written. A database application is a usually a program within a
program, it is a program that runs inside the RDMS. Most, if not all RDMSs, provide an
`application development language.' This will allow a computer programmer to create an
application to perform specific tasks for a particular database, most commonly to provide a
simpler and more efficient method of inputting data to the database, and for checking for
errors. Often this will use a series of forms with menus and buttons.

IMS ENGINEERING COLLEGE

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Faculty Name : Dr. Avdhesh Gupta, Mr. Vivek Jain

Subject with Code : NCS-552 (DBMS Lab)

Year & Semester : 3
rd

 year 5
th

 Semester

Course Outcomes as per the University syllabus:

Course Name: DBMS Lab

Year of Study: 5
th

 Semester (3
rd

 Year)

NCS-552 <Statement>

NCS-552.1 Be familiar with Installation of oracle

NCS-552.2 Gain knowledge about how to prepare Entity-Relationship Diagram (Using Tool)

NCS-552.3
Gain knowledge about how to Write SQL statements Using ORACLE /MYSQL
(DDL, DML and DCL)

NCS-552.4 Be familiar with Normalization in ORACLE (Integrity Constraints)

NCS-552.5
Gain knowledge about Creating cursor in oracle, Creating procedure and functions

in oracle, Creating packages and triggers in oracle

NCS-552.6 Knowledge of PL/SQL

Mapping with POs

Course

Outcome

PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12

CO1 1 1

CO2 2 2 3 3 2 1 3

CO3 3 3 3 3 1 3

CO4 3 3 3 3 1 3

CO5 2 2 2 2 1 1 3

CO6 2 2 2 2 1 1 3

Content

Beyond

Syllabus

2 2 1 1 2 2 2 2 2 2 2 2

Mapping with PSOs

Course
Outcome

PSO1 PSO2 PSO3 PSO4

CO1 1 1

CO2 2 2 2

CO3 3 3 3

CO4 2 2 1 3

CO5 3 3 3

CO6 2 2 1 2

Content
beyond

2 2 2 2

IMS Engineering College, Ghaziabad

Department of Computer Science & Engineering

Session 2016-17
Subject Name: DBMS Lab

Subject Code: NCS-552

Year and Branch: 3
rd

 year

S. No. Name Outcomes CO

Mapped

CO-PO

Mapping

CO-PSO

Mapping

1 Introduction to DBMS:

ORACLE, SQL, DB2
ORACLE/SQL Installation

Able to understand the ORACLE

/ SQL Installation

CO1 1,2,12 1,4

2 SQL Queries: Create, Insert,

Select

Understanding of DDL syntaxes CO3 1,2,3,12 1,2

3 Update, Delete, Modify,
where clause with some

aggregate functions like avg,
sum, count, max, min

Understanding of DML syntaxes
and able to understand use of

aggregate functions

CO3 1,2,3,4,11
,12

1,2

4 Primary key, Foreign Key

constraints and other

constraints

Able to understand the concept

of RDBMS (Entity relationships)

CO4 1,2,3,4,6,

11,12

1,2

5 Alter, Drop table, Date

Function

Able to understand to modify

entity structure

CO3 1,2,3,12 1,2

6 ERD Tool like Dia Learning of ERD tool CO2 1,2,3,5,9,

11,12

1,2,3,4

7 Join Queries and its types Able to understand to fetch the

required data from more than

one entity/table

CO4 1,2,3,4,5,

6,9,11,12

1,2,4

8 Sub Queries Able to understand to execute
nested queries

CO4 1,2,3,4,12 1,2

9 Index, Sequence Able to understand to speedup

data retrieval by use of index and
Auto increment a field by use of

sequences

CO5 1,2,3,12 1,2

10 Cursor and its types Able to understand the memory
area used by ORACLE

CO5 1,2,3,4,6,
12

1,2

11 Triggers and its types Able to understand how to

execute a stored program

automatically when some event
occur

CO5 1,2,3,4,6,

8,9,11,12

1,2,4

12 PL/SQL Able to understand programming

in SQL

CO6 1,5,11,12 1,2,4

13 Admin and user privileges Understanding of
Administration of database

handling and Admin privileges

 1,2,3,5,6,
8,9,12

1,2,3,4

14 MS. Access Learn to building automated
queries

 1,2,3,5,11
,12

1,2,3,4

15 Mini Project Learn to develop mini project

in group

 1,2,3,4,5,

6,7,8,9,10
,11,12

1,2,3,4

Program No: 1

TITLE: ORACLE Installation

1.1 Objective 1.2 Installation

1.1 OBJECTIVE: learn the procedure of ORACLE installation

1.2 ORACLE INSTALLATION:

Installing Oracle Database 11g on Windows

To install the Oracle software, you must use the Oracle Universal installer.

1. For this installation, you need either the DVDs or a downloaded version of the DVDs. In this tutorial, you

install from the downloaded version. From the directory where the DVD files were unzipped, open
Windows Explorer and double-click on setup.exe from the \db\Disk1 directory.

2. The product you want to install is Oracle Database 11g. Make sure the product is selected and click Next.

3. You will perform a basic installation with a starter database. Enter orcl for the Global Database Name
and oracle for Database Password and Confirm Password. Then, click Next

4. Oracle Configuration Manager allows you to associate your configuration information with your Metalink

account. You can choose to enable it on this window. Then, click Next.

5. Review the Summary window to verify what is to be installed. Then, click Install.

6. The progress window appears.

7. The Configuration Assistants window appears.

8. Your database is now being created.

9. When the database has been created, you can unlock the users you want to use. Click OK.

10. Click Exit. Click Yes to confirm exit.

Testing Your Installation

To test that your installation completed successfully, perform the following steps:

1. Open a browser and enter the following URL:

https://<hostname>:1158/em

where <hostname> should be changed to your machine name, IP address, or localhost.

Because Enterprise Manager Database Control is a secure site, you need a certificate. Select the Accept

this certificate permanently option, and then click OK.

2. Enter system as the User Name and oracle as the Password, and then click Login

3. The Database Control Home Page appears. Your installation was successful.

Another way to work on ORACLE:
1. Goto https://www.oracle.com/downloads/index.html

2. Create your login and download latest Express Edition of ORACE and install in simple way
3. Run the ORACLE, It will open in Web Browser

4. Click on Application Express

https://www.oracle.com/downloads/index.html

5. Login again and then create a new database user by filling the below entries and click on creating

workspace

6. Login by using your created username and password and start using ORACLE

Program No: 2

TITLE : CREATING TABLES, INSERT INTO TABLES & SELECT FROM TABLES

2.1 Objective 2.2 Theory 2.3 Assignment 2.4. Solutions

2.1 OBJECTIVE: Create tables and specify the queries in SQL

2.2 THEORY & CONCEPTS:

Introduction about SQL-
 SQL (Structured Query Language) is a nonprocedural language, you specify what you want, not how to get it.
A block structured format of English key words is used in this query language. It has the following

components.

DDL (Data Definition Language)-
The SQL DDL provides command for defining relation schemas, deleting relations and modifying relation
schema.

DML (DATA Manipulation Language)-
 It includes commands to insert tuples into, delete tuples from and modify tuples in the database.

View definition-
The SQL DDL includes commands for defining views.

Transaction Control- SQL includes for specifying the beginning and ending of transactions.

Embedded SQL and Dynamic SQL-
 Embedded and Dynamic SQL define how SQL statements can be embedded with in general purpose
programming languages, such as C, C++, JAVA, COBOL, Pascal and Fortran.

Integrity-
The SQL DDL includes commands for specifying integrity constraints that the data stored in the database

must specify. Updates that violate integrity constraints are allowed.

Authorization-
The SQL DDL includes commands for specifying access rights to relations and views.

Data Definition Language-

The SQL DDL allows specification of not only a set of relations but also information about each relation,

including-

 Schema for each relation

 The domain of values associated with each attribute.

 The integrity constraints.

 The set of indices to be maintained for each relation.

 The security and authorization information for each relation.

 The physical storage structure of each relation on disk.

Domain types in SQL-

The SQL standard supports a variety of built in domain types, including-

 Char (n)- A fixed length character length string with user specified length .

 Varchar (n)- A variable character length string with user specified maximum length n.

 Int- An integer.

 Small integer- A small integer.

 Numeric (p, d)-A Fixed point number with user defined precision.

 Real, double precision- Floating point and double precision floating point numbers with machine
dependent precision.

 Float (n)- A floating point number, with precision of at least n digits.

 Date- A calendar date containing a (four digit) year, month and day of the month.

 Time- The time of day, in hours, minutes and seconds Eg. Time ’09:30:00’.

 Number- Number is used to store numbers (fixed or floating point).

DDL statement for creating a table-

Syntax-
 Create table tablename

(columnname datatype(size), columnname datatype(size));

Creating a table from a table-

Syntax-
 CREATE TABLE TABLENAME
[(columnname, columnname, ………)]

AS SELECT columnname, columnname……..FROM tablename;

Insertion of data into tables-

Syntax-
 INSERT INTO tablename
[(columnname, columnname, ………)]

Values(expression, expression);

Inserting data into a table from another table:

Syntax-
INSERT INTO tablename

SELECT columnname, columnname, …….
FROM tablename;

Insertion of selected data into a table from another table:

Syntax-
 INSERT INTO tablename

SELECT columnname, columnname……..
FROM tablename

WHERE columnname= expression;

Retrieving of data from the tables-

Syntax-
 SELECT * FROM tablename;

The retrieving of specific columns from a table-

Syntax-
 SELECT columnname, columnname, ….

FROM tablename;

Elimination of duplicates from the select statement-

Syntax-
SELECT DISTINCT columnname, columnname
FROM tablename;

Selecting a data set from table data-

Syntax-
 SELECT columnname, columnname

FROM tablename

WHERE searchcondition;

2.3 ASSIGNMENT

Q1. Create the following tables:
i) client_master

columnname datatype size
client_no varchar2 6

name varchar2 20

address1 varchar2 30
address2 varchar2 30

city varchar2 15
state varchar2 15

pincode number 6

bal_due number 10,2

ii) Product_master
Columnname datatype size
Product_no varchar2 6

Description varchar2 20
Profit_percent number 10,2

Unit_measure varchar2 10

Qty_on_hand number 10
Reoder_lvl number 10

Sell_price number 10
Cost_price number 10

Q2- Insert the following data into their respective tables:

Clientno Name city pincode state bal.due

0001 Ivan Bombay 400054 Maharashtra 15000

0002 Vandana Madras 780001 Tamilnadu 0

0003 Pramada Bombay 400057 Maharashtra 5000
0004 Basu Bombay 400056 Maharashtra 0

0005 Ravi Delhi 100001 Delhi 2000

0006 Rukmini Bombay 400050 Maharashtra 0

Data for Product Master:

Product No. Desciption Profit % Unit Qty Reorder Sell Cost
 Percent measured on hand lvl price price

P00001 1.44floppies 5 piece 100 20 525 500
P03453 Monitors 6 piece 10 3 12000 11200

P06734 Mouse 5 piece 20 5 1050 500
P07865 1.22 floppies 5 piece 100 20 525 500

P07868 Keyboards 2 piece 10 3 3150 3050

P07885 CD Drive 2.5 piece 10 3 5250 5100
P07965 540 HDD 4 piece 10 3 8400 8000

P07975 1.44 Drive 5 piece 10 3 1050 1000

P08865 1.22 Drive 5 piece 2 3 1050 1000

Q3:- On the basis of above two tables answer the following queries:
i) Find out the names of all the clients.
ii) Retrieve the list of names and cities of all the clients.

iii) List the various products available from the product_master table.

iv) List all the clients who are located in Bombay.
v) Display the information for client no 0001 and 0002.

vi) Find the products with description as ‘1.44 drive’ and ‘1.22 Drive’.
vii) Find all the products whose sell price is greater then 5000.

viii) Find the list of all clients who stay in in city ‘Bombay’ or city ‘Delhi’ or ‘Madras’.

ix) Find the product whose selling price is greater than 2000 and less than or equal to 5000.
x) List the name, city and state of clients not in the state of ‘Maharashtra’.

2.4. SOLUTION TO ASSIGNMENT

Q.1. Create the following tables:
(i) create table client_master
(client_no varchar2(6),

name varchar2(20),

address1 varchar2(30),
address2 varchar2(30),

city varchar2(15),

state varchar2(15),
pincode number(6),

bal_due number(10,2));

(ii) create table product_master

(product_no varchar2(6),
Description varchar2(20),

Profit_percent number(10,2),

Unit_measure varchar2(10),
Qty_on_hand number(10),

Reorder_level_number number(10),
Sell_price number(10),

Cost_price_number number(10));

Q.2. Insert the following data into their respective tables:
(i) Insert into client_master

Values(‘0001’,’ivan’,’bombay’,’maharastra’,’201001’,’15000’);

(ii) Insert into product_master
Values(‘P00001’,’1.44floppies’,’5’,’piece’,’100’,’20’,’525’,’500’);

Q.3. Solutions
i. select name from client_master;

ii. select name, city from client_master;
iii. select description from product_master;

iv. select * from client_master where city = ‘bombay’;
v. select * from client_master where client_no = ‘0001’ or client_no = ‘ ‘0002’;

vi. select * from product_master where description=’1.44 drive’ or ‘1.22 drive’;

vii. select * from product_master where sell_price > 5000;
viii. select * from client_master where city = ‘bombay’ or city = ‘madras’;

ix. select * from product_master where sell_price > 2000 and sell_price <= 5000;

x. select name, city , state from client_master where state not in (‘maharastra’);

Program No: 3

TITLE : DATA MANIPULATION LANGUAGE

3.1 Objective 3.2 Theory 3.3 Assignment 3.4. Solution to Assignment

3.1 OBJECTIVE: Perform manipulation operations on created tables.

3.2 THEORY AND CONCEPTS: DML (Data Manipulation Language) Data manipulation is

 The retrieval of information stored in the database.

 The insertion of new information into the database.

 The deletion of information from the database.

 The modification of information stored by the appropriate data model. There are basically two types.

(i) Procedural DML:- require a user to specify what data are needed and how to get those data.

(ii) Non Procedural DML : require a user to specify what data are needed without specifying how
to get those data.

Updating the content of a table:
In creation situation we may wish to change a value in table without changing all values in the tuple . For this
purpose the update statement can be used.

Update table name
Set columnname = experision, columnname =expression……

Where columnname = expression;

Deletion Operation:-
 A delete request is expressed in much the same way as query. We can delete whole tuple (rows) we can
delete values on only particulars attributes.

Deletion of all rows

Syntax:
Delete from tablename :

Deletion of specified number of rows
Syntax:

Delete from table name
Where search condition ;

Computation in expression lists used to select data

+ Addition - Subtraction
* multiplication ** exponentiation

/ Division () Enclosed operation

Renaming columns used with Expression Lists: - The default output column names can be renamed by the

user if required

Syntax:

Select column name result_columnname,

 Columnname result_columnname,

From table name;

Logical Operators:
 The logical operators that can be used in SQL sentenced are

AND all of must be included

OR any of may be included
NOT none of could be included

Range Searching: Between operation is used for range searching.

Pattern Searching:
The most commonly used operation on string is pattern matching using the operation ‘like’ we describe

patterns by using two special characters.

 Percent (%) ; the % character matches any substring we consider the following examples.

 ‘Perry %’ matches any string beginning with perry

 ‘% idge % matches any string containing’ idge as substring.

 ‘ - - - ‘ matches any string exactly three characters.

 ‘ - - - % matches any string of at least of three characters.

Oracle functions:
Functions are used to manipulate data items and return result. function follow the format of function _name
(argument1, argument2 ..) .An arrangement is user defined variable or constant. The structure of function is

such that it accepts zero or more arguments.

Examples:
Avg return average value of n

Syntax:
Avg ([distinct/all]n)

Min return minimum value of expr.

Syntax:
MIN((distict/all)expr)
Count Returns the no of rows where expr is not null

Syntax:

Count ([distinct/all)expr]
Count (*) Returns the no rows in the table, including duplicates and those with nulls.

Max Return max value of expr

Syntax:

Max ([distinct/all]expr)

Sum Returns sum of values of n

Syntax:
 Sum ([distinct/all]n)

Sorting of data in table

Syntax:

 Select columnname, columnname

From table
Order by columnname;

3.3 ASSIGNMENT

 Que.1 Using the table client master and product master answer the following queries.

i. Change the selling price of ‘1.44 floppy drive to Rs.1150.00

ii. Delete the record with client 0001 from the client master table.
iii. Change the city of client_no’0005’ to Bombay.

iv. Change the bal_due of client_no ‘0001, to 1000.
v. Find the products whose selling price is more than 1500 and also find the new selling price as original

selling price *15.

vi. Find out the clients who stay in a city whose second letter is a.
vii. Find out the name of all clients having ‘a’ as the second letter in their names.

viii. List the products in sorted order of their description.

ix. Count the total number of orders
x. Calculate the average price of all the products.

xi. Calculate the minimum price of products.
xii. Determine the maximum and minimum prices . Rename the tittle as ‘max_price’ and min_price

respectively.

xiii. Count the number of products having price greater than or equal to 1500.

3.4 SOLUTION TO ASSIGNMENT:

i. update table client_master set sell_price = ‘1150’ where description=’1.44 drive’;

ii. Delete from client_master where client_no = ‘0001’;
iii. update table client_master set city=’bombay’ where client_no=’0001’;

iv. update table client_master set bal_due=1000 where client_no=’0001’;

v. select description from product_master where sell_price > 1500;
vi. select sell_price*15 “New Selling Price” from product_master;

vii. select * from client_master where city like ‘_a%’;

viii. select name from client_master where name=’_a%’;
ix. select * from product_master order by description;

x. select count(*) from product_master;
xi. select avg(sell_price) from product_master;

xii. select min(sell_price) from product_master;

xiii. select max(sell_price) “Max_price” , min(sell_price) “Min_price”;
xiv. select count(*) from product_master where sell_price >= 1500;

Program No: 4
TITLE: TO IMPLEMENT CONSTRAINTS ON TABLES.

4.1 Objective 4.2 Theory 4.3 Assignment 4.4. Solution to Assignment

4.1 OBJECTIVE: applying constraints on the columns

4.2 THEORY AND CONCEPTS:
Data constraints: Besides the cell name, cell length and cell data type there are other parameters i.e. other

data constrains that can be passed to the DBA at check creation time. The constraints can either be placed at
column level or at the table level.

i. Column Level Constraints: If the constraints are defined along with the column definition, it is

called a column level constraint.

ii. Table Level Constraints: If the data constraint attached to a specify cell in a table reference the
contents of another cell in the table then the user will have to use table level constraints.

Null Value Concepts:- while creating tables if a row locks a data value for particular column that value is
said to be null . Column of any data types may contain null values unless the column was defined as not null

when the table was created

Syntax:

Create table tablename
(columnname data type (size) not null ……)

Primary Key: primary key is one or more columns is a table used to uniquickly identity each row in the table.

Primary key values must not be null and must be unique across the column. A multicolumn primary key is
called composite primary key.

Syntax: primary key as a column constraint
Create table tablename

(columnname datatype (size) primary key,….)

Primary key as a table constraint
Create table tablename
(columnname datatype (size), columnname datatype(size)…

Primary key (columnname,columnname));

Unique key concept:-A unique is similar to a primary key except that the purpose of a unique key is to ensure

that information in the column for each record is unique as with telephone or devices license numbers. A table

may have many unique keys.

Syntax: Unique as a column constraint.
Create table table name

(columnname datatype (size) unique);

Unique as table constraint:
Create table tablename
(columnname datatype (size),columnname datatype (size)…unique (columnname,columnname));

Default value concept: At the line of cell creation a default value can be assigned to it. When the user is
loading a record with values and leaves this cell empty, the DBA wil automatically load this cell with the

default value specified. The data type of the default value should match the data type of the column

Syntax:

Create table tablename

(columnname datatype (size) default value,….);

Foreign Key Concept : Foreign key represents relationship between tables. A foreign key is column whose

values are derived from the primary key of the same of some other table . the existence of foreign key implies
that the table with foreign key is related to the primary key table from which the foreign key is derived .A

foreign key must have corresponding primary key value in the primary key table to have meaning.

Foreign key as a column constraint

Syntax :
Create table table name

(columnname datatype (size) references another table name);

Foreign key as a table constraint:

Syntax :
Create table name

(columnname datatype (size)….
primary key (columnname);

foreign key (columnname)references table name);

Check Integrity Constraints: Use the check constraints when you need to enforce intergrity rules that can be

evaluated based on a logical expression following are a few examples of appropriate check constraints.

 A check constraints name column of the coient_master so that the name is entered in upper
case.

 A check constraint on the client_no column of the client _master so that no client_no value
starts with ‘c’

Syntax:
Create table tablename

(columnname datatype (size) CONSTRAINT constraintname)
Check (expression));

4.3 ASSIGNMENTS:

 Que.1 Create the following tables:
i. Sales_master

Columnname Datatype Size Attributes
Salesman_no varchar2 6 Primary key/first letter

 must start with ‘S’

Sal_name varchar2 20 Not null
Address varchar2 Not null

City varchar2 20

State varchar2 20
Pincode Number 6

Sal_amt Number 8,2 Not null, cannot be 0
Tgt_to_get Number 6,2 Not null, cannot be 0

Ytd_sales Number 6,2 Not null, cannot be 0

Remarks Varchar2 30

ii. Sales_order

Columnname Datatype Size Attributes

S_order_no varchar2 6 Primary/first letter must be 0

S_order_date Date 6 Primary key reference clientno of

client_master table

Client_no Varchar2 25

Dely_add Varchar2 6

Salesman_no Varchar2 6 Foreign key references
salesman_no of salesman_master

table

Dely_type Char 1 Delivery part(p)/full(f),default f

Billed_yn Char 1

Dely_date Date Can not be lessthan s_order_date

Order_status Varchar2 10 Values (‘in

process’;’fulfilled’;back
order’;’canceled

I. Sales_order_details

Column Datatype Size Attributes

S_order_no Varchar2 6 Primary key/foreign key

references s_order_no

of sales_order

Product_no Varchar2 6 Primary key/foreign key

references product_no

of product_master

Qty_order Number 8

Qty_disp Number 8

Product_rate Number 10,2

Insert the following data into their respective tables using insert statement:

Data for sales_man master table

Salesman_n
o

Salesma
n name

Address City Pin code State Salamt Tgt_to_
get

Ytd
Sales

Remark

S00001 Kiran A/14
worli

Bom
bay

400002 Mah 3000 100 50 Good

S00002 Manish 65,narim

an

Bom

bay

400001 Mah 3000 200 100 Good

S00003 Ravi P-7
Bandra

Bom
bay

400032 Mah 3000 200 100 Good

S00004 Ashish A/5 Juhu Bom

bay

400044 Mah 3500 200 150 Good

(ii)

Data for salesorder table:

S_orderno S_orderdate Client no Dely
type

Bill
yn

Salesman no Delay
date

Orderstatus

019001 12-jan-96 0001 F N 50001 20-jan-

96

Ip

019002 25-jan-96 0002 P N 50002 27-jan-

96

C

016865 18-feb-96 0003 F Y 500003 20-feb-
96

F

019003 03-apr-96 0001 F Y 500001 07-apr-

96

F

046866 20-may-96 0004 P N 500002 22-may-
96

C

010008 24-may-96 0005 F N 500004 26-may-

96

Ip

(iii)

Data for sales_order_details table:

S_order no Product no Qty ordered Qty disp Product_rate

019001 P00001 4 4 525

019001 P07965 2 1 8400

019001 P07885 2 1 5250

019002 P00001 10 0 525

046865 P07868 3 3 3150

046865 P07885 10 10 5250

019003 P00001 4 4 1050

019003 P03453 2 2 1050

046866 P06734 1 1 12000

046866 P07965 1 0 8400

010008 P07975 1 0 1050

010008 P00001 10 5 525

4.4 SOLUTION TO ASSIGNMENT:

Q.1. create the following tables:
(i) Create table sales_master

(salesman_no varchar2(6) primary key check salesman_no in ‘S%’,

sal_name varchar2(20) not null,
address varchar2(20) not null,

city varchar2(20),

state varchar2(20),
pincode number(8),

sal_amt number(8,2) not null check(sal_amt >0),
tgt_to get number(6,2) not null check(sal_amt >0),

ytd_sales number(6,2) not null check(sal_amt >0),

remarks varchar2(30));

(ii) create table sales_order
s_order_no varchar2(6) primary key check s_order_no in ‘0%’,

s_order_date date,

client_no varchar2(25),
dely_add varchar2(6),

salesman_no varchar2(6) foreign key references salesman_no(sales_master),

dely_type char(1) check delt_type in ‘p’ or ‘f’ default ‘f’,

billed_yn char(1),
dely_date date check not in(dely_date<order_date),

order_status varchar2(10) check order_status in (‘in_process’ or ‘fulfilled’ or ‘back_order’ or ‘canceled’));

Q.2. Insert the following data into their respective tables using insert statement:
(i) Insert into sales_master
Values(‘S0001’,’kiran’,’a/14 worli’,’bombay ’,’400002 ’,’mah ’,’3000 ’,’100 ’,’50 ’,’good’);

(ii) Insert into sales_order
Values(‘019001’,’12-jan-96’,’0001 ’,’F ’,’N ’,’50001 ’,’20-jan-96’,’IP’);

 Program No: 5

TITLE : MODIFYING THE STRUCTURES OF THE TABLE.

5.1 Objective 5.2 Theory 5.3 Assignment 5.4. Solution to Assignment

5.1 OBJECTIVE: Use of Alter table statements

5.2 THEORY AND CONCEPTS: Modifying the Structure of Tables- Alter table command is used to

changing the structure of a table. Using the alter table clause you cannot perform the following tasks:

(i) change the name of table

(ii) change the name of column
(iii) drop a column

(iv) decrease the size of a table if table data exists.

The following tasks you can perform through alter table command.

(i) Adding new columns:
Syntax

ALTER TABLE tablename
ADD (newcolumnname newdatatype (size));

(ii) Modifying existing table
Syntax:

ALTER TABLE tablename

MODIFY (newcolumnname newdatatype (size));

NOTE: Oracle not allow constraints defined using the alter table, if the data in the table, violates such
constraints.

Removing/Deleting Tables- Following command is used for removing or deleting a table.

Syntax:

DROP TABLE tabename:

Defining Integrity constraints in the ALTER TABLE command-

You can also define integrity constraints using the constraint clause in the ALTER TABLE command. The

following examples show the definitions of several integrity constraints.

(1) Add PRIMARY KEY-

Syntax:
ALTER TABLE tablename

ADD PRIMARY KEY(columnname);

(2) Add FOREIGN KEY-

Syntax:
ALTER TABLE tablename

ADD CONSTRAINT constraintname
FOREIGN KEY(columnname) REFERENCES tablename;

Droping integrity constraints in the ALTER TABLE command:

You can drop an integrity constraint if the rule that if enforces is no longer true or if the constraint is no

longer needed. Drop the constraint using the ALTER TABLE command with the DROP clause. The following

examples illustrate the droping of integrity constraints.

(1) DROP the PRIMARY KEY-
Syntax:

ALTER TABLE tablename
DROP PRIMARY KEY

(2) DROP FOREIGN KEY-
Syntax:

ALTER TABLE tablename

DROP CONSTRAINT constraintname;

5.3 ASSIGNMENT:

Que 1. Create the following tables:
Challan_Header

Column name data type size Attributes
Challan_no varchar2 6 Primary key
s_order_no varchar2 6 Foreign key references s_order_no of

sales_order table
challan_date date not null

billed_yn char 1 values (‘Y’,’N’). Default ‘N’

Table Name : Challan_Details

Column name data type size Attributes
Challan_no varchar2 6 Primary key/Foreign key references

 Product_no of product_master
Qty_disp number 4,2 not null

Q2. Insert the following values into the challan header and challan_details tables:

(i) Challan No S_order No Challan Date Billed
 CH9001 019001 12-DEC-95 Y

 CH865 046865 12-NOV-95 Y

 CH3965 010008 12-OCT-95 Y

Data for challan_details table

Challan No Product No Qty_Disp
CH9001 P00001 4

CH9001 P07965 1

CH9001 P07885 1
CH6865 P07868 3

CH6865 P03453 4
CH6865 P00001 10

CH3965 P00001 5

CH3965 P07975 2

Answer the following queries

Q1. Make the primary key to client_no in client_master.

Q2. Add a new column phone_no in the client_master table.
Q3. Add the not null constraint in the product_master table with the columns description, profit

 percent , sell price and cost price.
Q4. Change the size of client_no field in the client_master table.

Q5. Select product_no, description where profit percent is between 20 and 30 both inclusive.

5.4 SOLUTION TO ASSIGNMENT:

Q.1. Create the following tables:
Create table challan_header (

Chalan_no varchar2(6) primary key,
S_order_no varchar2(6) foreign key references s_order_no(sales_order),

Challan_date date not null,

Billed_yn char(i) check billed_yn in (‘Y’ or ‘N’) default ‘N’);

create table challan_details(

challan_no varchar2(6) primary key foreign key references product_no(product_master),
qty_disp number(4,2) not null);

Q.2. Insert the following values into the challan header and challan_details tables:
Insert into challan_header

Values(‘ch9001’,’019001’,’12-dec-95’,’Y’);

Insert into challan_details

Values(‘ch9001’,’p00001’,’4’);

Program No: 6

TITLE: ER Diagram using Dia Tool

6.1 Objective 6.2 Theory (Installation & Dia Guide) 6.3 Assignment 6.4 Solution to Assignment

6.1 OBJECTIVE: applying tool to create ER model

6.2 THEORY AND CONCEPTS:

Introduction to Dia Diagram Editor:

a. Installation Guide

1. Download the installation file for your platform from http://dia-installer.de/.
2. Open the downloaded file, select preferred installation language, and press “OK”.

3. The Dia “Setup Wizard” window will appear. Click “Next”.

4. In the “License Agreement” window click “Next” to continue installation.

5. Choose the components you want to install and click “Next”.

6. Choose the installation location on your computer and click “Install”.

7. After the installation process is completed, click “Finish”.

b. Dia User Guide

Create an ER Diagram

In this section, basic guidelines are given on how to create ER database diagrams. An ER diagram consists of

entity sets, attributes, and the relationship sets between entity sets. Let us create an ER diagram for a database

called “Courses and Students”. The database will have two main entity sets, i.e., “Course” and “Student”. The

relation between them defines which students belong to which course.

1. Start Dia Diagram Editor.

2. On the left side of the menu click on the dropdown menu, select “Other sheets” and click on “ER”.

3. Now the menu consists only of shapes that are relevant to an ER diagram.

4. Let us create an entity called “Course”. Choose the “E” icon with a single frame in the shapes menu and

click on the drawing space at the center. A rectangle with the name “Entity” will appear.

5. Double-click on the new entity set and the properties window will show up (or right-click and choose

“Properties”). Change the name of the entity set to “Course” and click “OK”. The entity sets name will be

changed.

6. The “Course” entity set has several attributes: “courseId” (primary key), “title”, “ECTS”, “level”,

“language”. In the shape menu select the “A” icon with an oval around it and click near the created

“Course” entity set. An oval with the name “Attribute” will appear.

7. Double-click on the attribute and in the properties window change the name to “courseId”. Since this

attribute is also a primary key, select “Key” value “Yes”. Click “OK”.

8. In the shape menu click on the “Participation” icon and connect the entity set with the attribute.

9. It is also possible to connect an entity set with an attribute using different connectors. Choose the

appropriate style at the end of a new connector by clicking on “arrow style at the end of the line new

lines”. Select “line (L)” connector.

10. Proceed with the rest of the attributes of the entity set “Course”.

11. Attributes of the “Student” entity set are: “studentId”, “firstName”, “lastName”, “startDate”.

12. Create the relationship set between “Course” and “Student” with the name “Belongs” that also has an

attribute “signUpDate”. In the shape menu select “R” with a diamond around it and click between the two

entity sets in the drawing area.

DBMS Lab Manual (NCS-552)

37

13. Change the name to “Belongs” and assign attribute “signUpDate” to it.

The ER diagram for database “Courses and Students” was created successfully!

Note: save your diagram several times through all the creation process!

Export Created Diagram

1. Open the diagram you want to export.
2. Click on “File > Export“. Enter the name of the file, select the location you want the file to be

saved, determine file type (e.g. JPG), and click “Save”.

DBMS Lab Manual (NCS-552)

38

6.3 Assignment:
A university wants to set up a database to record details about its staff, and the departments they

belong to. They intend to record the following information.
• For each member of staff, their staff identity number, name, job title, and salary.

• For each department, its name and address.

• For each member of staff, all departments that they belong to. It is required that every member of
staff belongs to at least one department.

 • For each department, the head of department. It is required that each department has exactly one
head of department.

Draw an ER diagram that expresses the requirements for the database. Make sure that you capture all

the constraints on the data mentioned above.

6.4 Solution to Assignment:
Here is one possible ER diagram:

Program No: 7

DBMS Lab Manual (NCS-552)

39

TITLE: USE OF JOINS.

7.1 Objective 7.2 Theory 7.3 Assignment 7.4. Solution to Assignment

7.1 OBJECTIVE: How different types of join is used.

7.2 THEORY AND CONCEPTS: Joint Multiple Table (Equi Join): Some times we require to

treat more than one table as though manipulate data from all the tables as though the tables were not
separate object but one single entity. To achieve this we have to join tables.Tables are joined on

column that have dame data type and data with in tables.

 The tables that have to be joined are specified in the FROM clause and the joining

attributes in the WHERE clause.

Algorithm for JOIN in SQL:
1. Cartesian product of tables (specified in the FROM clause)
2. Selection of rows that match (predicate in the WHERE clause)

3. Project column specified in the SELECT clause.

1. Cartesian product:-

Consider two table student and course

Select B.*,P.*

FROM student B, course P;

2. INNER JOIN:
 Cartesian product followed by selection

Select B.*,P.*

FROM student B, Course P
WHERE B.course # P.course # ;

3. LEFT OUTER JOIN:

LEFT OUTER JOIN = Cartesian product + selection but include rows from the left table which

are unmatched pat nulls in the values of attributes belonging to th e second table

Exam:

Select B.*,P*

FROM student B left join course p

ON B.course # P.course #;

4. RIGHT OUTER JOIN:
RIGHT OUTER JOIN = Cartesian product + selection but include rows from right table

which are unmatched

Exam:

Select B.*,P.*
From student B RIGHT JOIN course P

B.course# = P course # ;

5. FULL OUTER JOIN

DBMS Lab Manual (NCS-552)

40

 Exam

Select B.*,P.*

From student B FULL JOIN course P
 On B.course # = P course # ;

7.3 ASSIGNMENT

1. Find out the product which has been sold to ‘Ivan Sayross.’
2. Find out the product and their quantities that will have do delivered.

3. Find the product_no and description of moving products.

4. Find out the names of clients who have purchased ‘CD DRIVE’
5. List the product_no and s_order_no of customers haaving qty ordered less than 5 from the

order details table for the product “1.44 floppies”.

6. Find the products and their quantities for the orders placed by ‘Vandan Saitwal ’ and “Ivan
Bayross”.

7. Find the products and their quantities for the orders placed by client_no “ C00001” and
“C00002”

8. Find the order No,, Client No and salesman No. where a client has been received by more

than one salesman.
9. Display the s_order_date in the format “dd-mm-yy” e.g. “12- feb-96”

10. Find the date , 15 days after date.

7.4 SOLUTION TO ASSIGNMENT

i. Select product_name from product_master

where seller_name =’Ivan Bayross’;

ii. select product_name, product_qty from product_master

where dely_date > sysdate;

iii. select product_no , description from product_master
where reorder_lvl <10;

iv. select name from client_master c, product_master p
where p.client_no = c.client_no

and product_name = ‘CD Drive’;

v. select product_no, order_no from product_master p, sales_order s

where p.product_no = s.product_no
and product_qty < 5

and product_name = ‘1.44 Floppies’

vi. select product_name, product_qty from product_master p, sales_order s, client_master c

where p.product_no = s.product_no and
s.client_no = c.client_no

and client_name = ‘Vandan Saitwal’ and ‘Ivan Bayross’;

DBMS Lab Manual (NCS-552)

41

vii. select product_name, product_qty from product_master p, sales_order s, client_master c

where p.product_no = s.product_no and

s.client_no = c.client_no
and client_no = ‘C0001’ and ‘C00002’;

viii. select order_no, client_no , salesman_no from sales_order so, client_master cm, sales_master
sm where sm.salesman_no = so.salesman_no and

so.client_no = cm.client_no and
salesman>1;

ix. select s_order_date ‘dd-mm-yy’from sales_order;

x. select sysdate+15 “Date after 15 days” from sales_order;

DBMS Lab Manual (NCS-552)

42

Program No: 8
TITLE: GROUPING DATA FROM TABLES.

8.1 Objective 8.2 Theory 8.3 Assignment 8.4. Solution to Assignment

8.1 OBJECTIVE: use of group functions.

8.2 THEORY AND CONCEPTS: Grouping Data From Tables:

 There are circumstances where we would like to apply the aggregate function not only to a single set

of tuples, but also to a group of sets of tuples, we specify this wish in SQL using the group by clause.
The attribute or attributes given in the group by clause are used to form group. Tuples with the same

value on all attributes in the group by clause are placed in one group.

Syntax:

SELECT columnname, columnname

FROM tablename

GROUP BY columnname;

At times it is useful to state a condition that applies to groups rather than to tuples. For example we

might be interested in only those branches where the average account balance is more than 1200. This
condition does not apply to a single tuple, rather it applies to each group constructed by the GROUP

BY clause. To express such query, we use the having clause of SQL. SQL applies predicates in the
having may be used.

Syntax:

SELECT columnname, columnname

FROM tablename
GROUP BY columnname;

HAVING searchcondition;

8.3. ASSIGNMENTS:

Answer the following queries:

Q1.- Print the description and total quantity sold for each product.

Q2.- Find the value of each product sold.

Q3.- Calculate the average quantity sold for each client that has a maximum order value of

 15000.

Q4.- Find out the products which has been sold to Ivan.

Q5.- Find the names of clients who have ‘CD Drive’.

Q6.- Find the products and their quantities for the orders placed by ‘Vandana’ and ‘Ivan’.

DBMS Lab Manual (NCS-552)

43

Q7.- Select product_no, total qty_ordered for each product.

Q8.- Select product_no, product description and qty ordered for each product.

Q9.- Display the order number and day on which clients placed their order.

Q10.- Display the month and Date when the order must be delivered.

8.4 SOLUTION TO ASSIGNMENT

1. Select description, sum(product_qty) from product_master group by description;

2. Select distinct description from product_master;

3. select distinct client_name, avg(product_qty) from sales_order so,

 product_master pm where so.client_no = pm.client_no
 group by client_name

 having order_value = (Select max(order_value) from sales_order);

4. select product_name from product_master pm, sales_master sm

 where pm.client_no = sm.client_no and sal_name=’Ivan’;

5. select name from client_master where description = ‘CD Drive’;

6. select product_name, product_qty from product_master pm, sales_order so

 where pm.salesman_no= so.salesman_no and salesman_name = ‘Vandana’ and ‘Ivan’;

7. select distinct product_name, product_qty from product_master;

8. select distinct description , product_no, product_qty from product_master;

9. select order_no, date from sales_order;

10. select dely_date from sales_order;

DBMS Lab Manual (NCS-552)

44

Program No: 8

TITLE: SUBQUERIES.

8.1 Objective 8.2 Theory 8.3 Assignment 8.4. Solution to Assignment

8.1 OBJECTIVE: How subqueries is used.

8.2 THEORY AND CONCEPTS: a subquery is a form of an SQL statement that appears inside
another SQL statement. It also termed as nested query. The statement containing a subquery called a

parent statement. The rows returned bu the subquery are use by the following statement.

It can be used by the following commands:

1. To insert records in the target table.
2. To create tables and insert records in this table.

3. To update records in the target table.
4. To create view.

5. To provide values for the condition in the WHERE , HAVING IN , SELECT,UPDATE, and

DELETE statements.
Exam:-

Creating clientmaster table from oldclient_master, table

Create table client_master

AS SELECT * FROM oldclient_master;

Using the Union, Intersect and Minus Clause:

Union Clause:

The user can put together multiple queries and combine their output using the union clause . The

union clause merges the output of two or more queries into a single set of rows and column. The

final output of union clause will be

Output: = Records only in query one + records only in query two + A single set of records with is

common in the both queries.

Syntax:

SELECT columnname, columname

FROM tablename 1
UNION

SELECT columnname, columnname

From tablename2;

Intersect Clause: The use can put together multiple queries and their output using the interest clause.
The final output of the interest clause will be :

Output =A single set of records which are common in both queries

DBMS Lab Manual (NCS-552)

45

Syntax:
SELECT columnname, columnname

FROM tablename 1
INTERSECT

SELECT columnname, columnname

FROM tablename 2;

MINUS CLAUSE:- The user can put together multiple queries and combine their output = records
only in query one

Syntax:
SELECT columnname, columnname

FROM tablename ;

MINUS
SELECT columnname, columnname

FROM tablename ;

8.3 ASSIGNMENT
Answer the following queries:

i. Find the product_no and description of non- moving products.
ii. Find the customer name, address, city and pincode for the client who has placed order no

“019001”
iii. Find the client names who have placed order before the month of may 96.

iv. Find out if product “1.44 Drive” is ordered by only client and print the client_no name to

whom it was sold.
v. find the names of client who have placed orders worth Rs.10000 or more.

vi. Select the orders placed by ‘Rahul Desai”

vii. Select the names of persons who are in Mr. Pradeep’s department and who have also
worked on an inventory control system.

viii. Select all the clients and the salesman in the city of Bombay.
ix. Select salesman name in “Bombay” who has atleast one client located at “Bombay”

x. Select the product_no, description, qty_on-hand,cost_price of non_moving items in the

product_master table.

8.4. SOLUTION TO ASSIGNMENT

i. select product_no, description from product_master where reorder_lvl =3;

ii. select name, address, city, pincode from client_master cm, sales_order so where

cm.client_no= so.client_no

and so.order_no = ‘019001’;

iii. select name from client_master cm, sales_order so
where cm.client_no = so.client_no

and order_date < 01-may-96;

iv. select client_no, name from clien_master cm, product_master pm

where cm.client_no = pm.client_no

product_name=’1.44 Drive’;

DBMS Lab Manual (NCS-552)

46

v. select name from client_master cm, sales_order so

where cm.client_no = so.client_no
and order_amt >= 10000;

vi. select * from sales_order so, sales_master sm
where so.salesman_no= sm.salesman_no

and sal_name =’Rahul Desai’;

vii. select sal_person from sales_master where dept in (select dept from client_master

where name = ‘Pradeep’) and project_name=’Inventory Control System’;

viii. select * from client_master cm, sales_master sm

cm.client_no = sm.client_no and
cm.city =’bombay’;

ix. select sal_name from sales_master where city =’bombay’;

x. select product_no, description, qty_on-hand, cost_price from product_master;

DBMS Lab Manual (NCS-552)

47

Program No: 9

TITLE : INDEXES , SEQUENCES & VIEWS

9.1 Objective 9.2 Theory 9.3 Assignment 9.4. Solution to Assignment

9.1 OBJECTIVE: Use of different types of Indexes, uses of sequences and views.

9.2 THEORY AND CONCEPTS:
Indexes- An index is an ordered list of content of a column or group of columns in a table. An index

created on the single column of the table is called simple index. When multiple table columns are

included in the index it is called composite index.

Creating an Index for a table:-

Syntax (Simple)
 CREATE INDEX index_name
 ON tablename(column name);

Composite Index:-
 CREATE INDEX index_name
 ON tablename(columnname,columnname);

Creating an Unique Index:-
 CREATE UNIQUE INDEX indexfilename
 ON tablename(columnname);

Dropping Indexes:-
 An index can be dropped by using DROP INDEX

SYNTAX:-
 DROP INDEX indexfilename;

Views:-
Logical data is how we want to see the current data in our database. Physical data is how this data is

actually placed in our database.
Views are masks placed upon tables. This allows the programmer to develop a method via which we

can display predetermined data to users according to our desire.
 Views may be created fore the following reasons:

1. The DBA stores the views as a definition only. Hence there is no duplication of data.
2. Simplifies queries.

3. Can be queried as a base table itself.

4. Provides data security.
5. Avoids data redundancy.

Sequences:
Use the CREATE SEQUENCE statement to create a sequence, which is a database object from which

multiple users may generate unique integers. You can use sequences to automatically generate

primary key values.

When a sequence number is generated, the sequence is incremented, independent of the transaction

committing or rolling back. If two users concurrently increment the same sequence, then the sequence

numbers each user acquires may have gaps, because sequence numbers are being generated by the

other user. One user can never acquire the sequence number generated by another user. After a

sequence value is generated by one user, that user can continue to access that value regardless of

whether the sequence is incremented by another user.

DBMS Lab Manual (NCS-552)

48

Sequence numbers are generated independently of tables, so the same sequence can be used for one or

for multiple tables. It is possible that individual sequence numbers will appear to be skipped, because

they were generated and used in a transaction that ultimately rolled back. Additionally, a single user

may not realize that other users are drawing from the same sequence.

After a sequence is created, you can access its values in SQL statements with the CURRVAL

pseudocolumn, which returns the current value of the sequence, or the NEXTVAL pseudocolumn,

which increments the sequence and returns the new value.

EXAMPLE:

CREATE SEQUENCE customers_seq

START WITH 1000

INCREMENT BY 1

NOCACHE

NOCYCLE;

Example:

create sequence noseq increment by 2 start with 1 minvalue 1 maxvalue 19 cycle nocache noorder;

select noseq.nextval from dual;

create table abcd (no number(2), name varchar2(25));

insert into abcd values (noseq.nextval/currval, 'RAM');

Views:-

Syntax:-
 CREATE VIEW viewname AS

 SELECT columnname,columnname

 FROM tablename
 WHERE columnname=expression_list;

DBMS Lab Manual (NCS-552)

49

Renaming the columns of a view:-

Syntax:-

 CREATE VIEW viewname AS

 SELECT newcolumnname….
 FROM tablename

 WHERE columnname=expression_list;

Selecting a data set from a view-

Syntax:-

 SELECT columnname, columnname

 FROM viewname
 WHERE search condition;

Destroying a view-

Syntax:-
 DROP VIEW viewname;

9.3 ASSIGNMENT:

Answer the following questions

i. Create an index on the table client_master, field client_no.

ii. Create an index on the sales_order, field s_order_no.

iii. Create an composite index on the sales_order_details table for the columns s_order_no and

product_no.

iv. Create an composite index ch_index on challan_header table for the columns challan no and

s_order_no.

v. Create an unique index on the table salesman_master, field salesman_no.

vi. Drop index ch_index on table challan_header.

vii. Create view on salesman_master whose sal_amt is less than 3500.

viii. Create a view client_view on client_master and rename the columns as name, add1,

ix. add2, city, pcode, state respectively.

x. Select the client names from client_view who lives in city ‘Bombay’.

xi. Drop the view client_view.

9.4 SOLUTION TO ASSIGNMENT

i. create index indx_client on Client_master(client_no);

ii. create index indx_order on sales_order(s_order_no);

DBMS Lab Manual (NCS-552)

50

iii. create unique index indx_sales_order on sales_order_details(order_no, product_no);

iv. create unique index ch_index on challan_header(challan_no, s_order_no);

v. create unique index indx_sales on sales_master(salesman_no);

vi. drop index ch_indx on challan_header;

vii. create view sm_view on sales_master as select * from sales_master where sal_amt <
3500;

viii. create view client_view on client_master and alter table rename column name
newname, add1 address……;

ix. select name from clinet_view where city = ‘bombay’;

x. drop view client_view;

Program No: 10

DBMS Lab Manual (NCS-552)

51

TITLE: CURSOR

10.1 Objective 10.2 Theory 10.3 Example for practice

10.1 OBJECTIVE: Use of cursor

10.2 THEORY AND CONCEPTS:
The central purpose of the Oracle PL/SQL language is to make it as easy and efficient as possible to

query and change the contents of tables in a database. You must, of course, use the SQL language to

access tables, and each time you do so, you use a cursor to get the job done. A cursor is a pointer to a

private SQL area that stores information about the processing of a SELECT or data manipulation

language (DML) statement (INSERT, UPDATE, DELETE, or MERGE). Cursor management of

DML statements is handled by Oracle Database, but PL/SQL offers several ways to define and

manipulate cursors to execute SELECT statements.

SELECT-INTO offers the fastest and simplest way to fetch a single row from a SELECT statement.
The syntax of this statement is

SELECT select_list INTO variable_list FROM remainder_of_query;

EXAMPLE:

Get the last name for a specific employee ID (the primary key in the employees table):

DECLARE

 l_last_name employees.last_name%TYPE;

BEGIN
 SELECT last_name

 INTO l_last_name
 FROM employees

 WHERE employee_id = 138;

 DBMS_OUTPUT.put_line (

 l_last_name);

END;
Fetch an entire row from the employees table for a specific employee ID:

DECLARE
 l_employee employees%ROWTYPE;

BEGIN

 SELECT *
 INTO l_employee

 FROM employees
 WHERE employee_id = 138;

 DBMS_OUTPUT.put_line (
 l_employee.last_name);

END;

Using the Cursor FOR Loop
The cursor FOR loop is an elegant and natural extension of the numeric FOR loop in PL/SQL. With a
numeric FOR loop, the body of the loop executes once for every integer value between the low and

DBMS Lab Manual (NCS-552)

52

high values specified in the range. With a cursor FOR loop, the body of the loop is executed for each

row returned by the query.

The following block uses a cursor FOR loop to display the last names of all employees in department

10:

BEGIN

 FOR employee_rec IN (

 SELECT *
 FROM employees

 WHERE department_id = 10)

 LOOP
 DBMS_OUTPUT.put_line (

 employee_rec.last_name);
 END LOOP;

END;

10.3 Example for practice

EXAMPLE:

BEGIN

update abcd set no=22 where name='ramDA';

if SQL%FOUND then
dbms_output.put_line('success');

else

dbms_output.put_line('failed');
end if;

end;

DECLARE
ROWS_AFFECTED CHAR(4);

BEGIN

update abcd set no=23 where name='ram';
ROWS_AFFECTED :=TO_CHAR(SQL%ROWCOUNT);

if SQL%ROWCOUNT>0 then
dbms_output.put_line(ROWS_AFFECTED ||'success');

else

dbms_output.put_line('failed');
end if;

end;

Program No: 11

TITLE: TRIGGER

DBMS Lab Manual (NCS-552)

53

11.1 Objective 11.2 Theory 11.3 Example for practice

11.1 OBJECTIVE: understand the concept of trigger and their uses

11.2 THEORY AND CONCEPTS:
Triggers, which are procedures, stored in PL/SQL (fire) implicitly whenever a table or view is

modified or when some user actions or database system actions occur. We can write triggers that fire

whenever one of the following operations occurs:

DML statements (INSERT, UPDATE, DELETE) on a particular table or view, issued by any user

DDL statements (CREATE or ALTER primarily) issued either by a particular schema/user or by any

schema/user in the database. Database events, such as logon/logoff, errors, or startup/shutdown, also

issued either by a particular schema/user or by any schema/user in the database. Triggers supplement

the standard capabilities of Oracle to provide a highly customized database management system. For

example, a trigger can restrict DML operations against a table to those issued during regular business

hours.

A trigger has three basic parts:

1. A triggering event or statement

2. A trigger restriction

3. A trigger action

Types of triggers

Row Triggers and Statement Triggers

When you define a trigger, you can specify the number of times the trigger action is to be run:

Once for every row affected by the triggering statement, such as a trigger fired by an UPDATE

statement that updates many rows

Once for the triggering statement, no matter how many rows it affects

1. Row Triggers

A row trigger is fired each time the table is affected by the triggering statement. For example, if an

UPDATE statement updates multiple rows of a table, a row trigger is fired once for each row affected

by the UPDATE statement. If a triggering statement affects no rows, a row trigger is not run.

2. Statement Triggers

A statement trigger is fired once on behalf of the triggering statement, regardless of the number of

rows in the table that the triggering statement affects, even if no rows are affected. For example, if a

DELETE statement deletes several rows from a table, a statement-level DELETE trigger is fired only

once.

DBMS Lab Manual (NCS-552)

54

 BEFORE and AFTER Triggers

When defining a trigger, you can specify the trigger timing—whether the trigger action is to be run

before or after the triggering statement. BEFORE and AFTER apply to both statement and row

triggers.

BEFORE and AFTER triggers fired by DML statements can be defined only on tables, not on views.
However, triggers on the base tables of a view are fired if an INSERT, UPDATE, or DELETE

statement is issued against the view. BEFORE and AFTER triggers fired by DDL statements can be

defined only on the database or a schema, not on particular tables.

3. Trigger Type Combinations

Using the options listed previously, you can create four types of row and statement triggers:

BEFORE statement trigger

Before executing the triggering statement, the trigger action is run.

BEFORE row trigger

Before modifying each row affected by the triggering statement and before checking appropriate

integrity constraints, the trigger action is run, if the trigger restriction was not violated.

AFTER statement trigger

After executing the triggering statement and applying any deferred integrity constraints, the trigger

action is run.

AFTER row trigger

After modifying each row affected by the triggering statement and possibly applying appropriate

integrity constraints, the trigger action is run for the current row provided the trigger restriction was

not violated. Unlike BEFORE row triggers, AFTER row triggers lock rows.

2. INSTEAD OF Triggers

INSTEAD OF triggers provide a transparent way of modifying views that cannot be modified directly

through DML statements (INSERT ,UPDATE, and DELETE). These triggers are called INSTEAD

OF triggers because, unlike other types of triggers, Oracle fires the trigger instead of executing the

triggering statement.

11.3 Example for practice

CREATE TABLE product_price_history

(product_id number(5),
product_name varchar2(32),

supplier_name varchar2(32),

unit_price number(7,2));

CREATE TABLE product

DBMS Lab Manual (NCS-552)

55

(product_id number(5),

product_name varchar2(32),

supplier_name varchar2(32),
unit_price number(7,2));

CREATE or REPLACE TRIGGER price_history_trigger

BEFORE UPDATE OF unit_price
ON product

FOR EACH ROW

BEGIN
INSERT INTO product_price_history

VALUES

(:old.product_id,
 :old.product_name,

 :old.supplier_name,
 :old.unit_price);

END;

insert into PRODUCT (unit_price, product_id) values (1111,2222);

UPDATE PRODUCT SET unit_price = 800 WHERE product_id = 2222;

CREATE TABLE tbl_Students

(

 Studentid number,
 Firstname varchar2(50),

 Lastname varchar2(50),
 Email varchar2(100)

)

Program No: 12
TITLE: PL/SQL

12.1 Objective 12.2 Theory 12.3 Example for practice

DBMS Lab Manual (NCS-552)

56

12.1 OBJECTIVE: understand the concept of PL/SQL

10.2 THEORY AND CONCEPTS:
PL/SQL is a combination of SQL along with the procedural features of programming languages. It

was developed by Oracle Corporation in the early 90's to enhance the capabilities of SQL. PL/SQL is
one of three key programming languages embedded in the Oracle Database, along with SQL itself

and Java.

The PL/SQL programming language was developed by Oracle Corporation in the late 1980s as

procedural extension language for SQL and the Oracle relational database. Following are notable
facts about PL/SQL:

 PL/SQL is a completely portable, high-performance transaction-processing language.
 PL/SQL provides a built-in interpreted and OS independent programming environment.

 PL/SQL can also directly be called from the command-line SQL*Plus interface.
 Direct call can also be made from external programming language calls to database.

 PL/SQL's general syntax is based on that of ADA and Pascal programming language.

 Apart from Oracle, PL/SQL is available in TimesTen in-memory database and IBM DB2.

Features of PL/SQL
PL/SQL has the following features:

 PL/SQL is tightly integrated with SQL.
 It offers extensive error checking.

 It offers numerous data types.
 It offers a variety of programming structures.

 It supports structured programming through functions and procedures.

 It supports object-oriented programming.
 It supports developing web applications and server pages.

Advantages of PL/SQL
PL/SQL has the following advantages:

 SQL is the standard database language and PL/SQL is strongly integrated with SQL. PL/SQL
supports both static and dynamic SQL. Static SQL supports DML operations and transaction

control from PL/SQL block. Dynamic SQL is SQL allows embedding DDL statements in

PL/SQL blocks.
 PL/SQL allows sending an entire block of statements to the database at one time. This

reduces network traffic and provides high performance for the applications.

 PL/SQL gives high productivity to programmers as it can query, transform, and update data
in a database.

 PL/SQL saves time on design and debugging by strong features, such as exception handling,
encapsulation, data hiding, and object-oriented data types.

 Applications written in PL/SQL are fully portable.

 PL/SQL provides high security level.
 PL/SQL provides access to predefined SQL packages.

 PL/SQL provides support for Object-Oriented Programming.
 PL/SQL provides support for Developing Web Applications and Server Pages.

12.3 Example for practice
Example 1:

DECLARE

DBMS Lab Manual (NCS-552)

57

 -- constant declaration

 pi constant number := 3.141592654;

 -- other declarations

 radius number(5,2);

 dia number(5,2);

 circumference number(7, 2);

 area number (10, 2);

BEGIN

 -- processing

 radius := 9.5;

 dia := radius * 2;

 circumference := 2.0 * pi * radius;

 area := pi * radius * radius;

 -- output

 dbms_output.put_line('Radius: ' || radius);

 dbms_output.put_line('Diameter: ' || dia);

 dbms_output.put_line('Circumference: ' || circumference);

 dbms_output.put_line('Area: ' || area);

END;

Program 2:

DECLARE

 i number(1);

 j number(1);

BEGIN

 << outer_loop >>

 FOR i IN 1..3 LOOP

 << inner_loop >>

 FOR j IN 1..3 LOOP

 dbms_output.put_line('i is: '|| i || ' and j is: ' || j);

 END loop inner_loop;

 END loop outer_loop;

END;

/

Example 3:

DBMS Lab Manual (NCS-552)

58

DECLARE

 type namesarray IS VARRAY(5) OF VARCHAR2(10);

 type grades IS VARRAY(5) OF INTEGER;

 names namesarray;

 marks grades;

 total integer;

BEGIN

 names := namesarray('Kavita', 'Pritam', 'Ayan', 'Rishav', 'Aziz');

 marks:= grades(98, 97, 78, 87, 92);

 total := names.count;

 dbms_output.put_line('Total '|| total || ' Students');

 FOR i in 1 .. total LOOP

 dbms_output.put_line('Student: ' || names(i) || '

 Marks: ' || marks(i));

 END LOOP;

END;

/

Example 4:

DECLARE

 customer_rec customers%rowtype;

BEGIN

 SELECT * into customer_rec

 FROM customers

 WHERE id = 5;

 dbms_output.put_line('Customer ID: ' || customer_rec.id);

 dbms_output.put_line('Customer Name: ' || customer_rec.name);

 dbms_output.put_line('Customer Address: ' || customer_rec.address);

 dbms_output.put_line('Customer Salary: ' || customer_rec.salary);

END;

/

Program No: 13

TITLE: ADMIN & USER PRIVILEGES

DBMS Lab Manual (NCS-552)

59

13.1 Objective 13.2 Theory

13.1 OBJECTIVE: uses of admin & assign user privileges

13.2 THEORY AND CONCEPTS:

A user privilege is a right to execute a particular type of SQL statement, or a right to access another
user's object. The types of privileges are defined by Oracle.

Roles, on the other hand, are created by users (usually administrators) and are used to group together
privileges or other roles. They are a means of facilitating the granting of multiple privileges or roles to

users.

System Privileges

There are over 100 distinct system privileges. Each system privilege allows a user to perform a
particular database operation or class of database operations.

Restricting System Privileges

Because system privileges are so powerful, Oracle recommends that you configure your database to
prevent regular (non-DBA) users exercising ANY system privileges (such as UPDATE ANY
TABLE) on the data dictionary. In order to secure the data dictionary, ensure that

the O7_DICTIONARY_ACCESSIBILITY initialization parameter is set to FALSE. This feature is

called the dictionary protection mechanism.

Accessing Objects in the SYS Schema

Users with explicit object privileges or those who connect with administrative privileges (SYSDBA)

can access objects in the SYS schema. Another means of allowing access to objects in
the SYS schema is by granting users any of the following roles:

 SELECT_CATALOG_ROLE

This role can be granted to users to allow SELECT privileges on all data dictionary views.

 EXECUTE_CATALOG_ROLE

This role can be granted to users to allow EXECUTE privileges for packages and procedures
in the data dictionary.

 DELETE_CATALOG_ROLE

This role can be granted to users to allow them to delete records from the system audit table
(AUD$).

Additionally, the following system privilege can be granted to users who require access to tables
created in the SYS schema:

 SELECT ANY DICTIONARY

DBMS Lab Manual (NCS-552)

60

This system privilege allows query access to any object in the SYS schema, including tables

created in that schema. It must be granted individually to each user requiring the privilege. It

is not included in GRANT ALL PRIVILEGES, nor can it be granted through a role.

Object Privileges

Each type of object has different privileges associated with it.

You can specify ALL [PRIVILEGES] to grant or revoke all available object privileges for an
object. ALL is not a privilege; rather, it is a shortcut, or a way of granting or revoking all object

privileges with one word in GRANT and REVOKE statements. Note that if all object privileges are
granted using the ALL shortcut, individual privileges can still be revoked.

Likewise, all individually granted privileges can be revoked by specifying ALL. However, if

you REVOKE ALL, and revoking causes integrity constraints to be deleted (because they depend on
a REFERENCES privilege that you are revoking), you must include the CASCADE

CONSTRAINTS option in the REVOKE statement.

User Roles

A role groups several privileges and roles, so that they can be granted to and revoked from users
simultaneously. A role must be enabled for a user before it can be used by the user.

Oracle provides some predefined roles to help in database administration. These roles, listed in Table

are automatically defined for Oracle databases when you run the standard scripts that are part of

database creation. You can grant privileges and roles to, and revoke privileges and roles from, these
predefined roles in the same way as you do with any role you define.

Role Name

Created By

(Script) Description

CONNECT SQL.BSQ Includes the following system privileges: ALTER
SESSION, CREATE CLUSTER, CREATE DATABASE

LINK, CREATE SEQUENCE, CREATE
SESSION, CREATE SYNONYM, CREATE

TABLE,CREATE VIEW

RESOURCE SQL.BSQ Includes the following system privileges: CREATE
CLUSTER, CREATE INDEXTYPE, CREATE

OPERATOR, CREATE PROCEDURE, CREATE

SEQUENCE, CREATE TABLE, CREATE
TRIGGER,CREATE TYPE

DBA SQL.BSQ All system privileges WITH ADMIN OPTION

Note: The previous three roles are provided to maintain compatibility with previous versions of

Oracle and may not be created automatically in future versions of Oracle. Oracle Corporation

recommends that you design your own roles for database security, rather than relying on these roles.

EXP_FULL_DATAB

ASE

CATEXP.SQL Provides the privileges required to perform full and

incremental database exports. Includes: SELECT ANY

TABLE, BACKUP ANY TABLE, EXECUTE ANY
PROCEDURE, EXECUTE ANY TYPE, ADMINISTER

RESOURCE MANAGER, and INSERT, DELETE,
and UPDATE on the tables SYS.INCVID, SYS.INCFIL,

DBMS Lab Manual (NCS-552)

61

Role Name
Created By
(Script) Description

and SYS.INCEXP. Also the following

roles:EXECUTE_CATALOG_ROLE and SELECT_CAT
ALOG_ROLE.

IMP_FULL_DATAB

ASE

CATEXP.SQL Provides the privileges required to perform full database

imports. Includes an extensive list of system privileges
(use view DBA_SYS_PRIVS to view privileges) and the

following
roles: EXECUTE_CATALOG_ROLE and SELECT_CAT

ALOG_ROLE.

DELETE_CATALO
G_ROLE

SQL.BSQ Provides DELETE privilege on the system audit table
(AUD$)

EXECUTE_CATAL

OG_ROLE

SQL.BSQ Provides EXECUTE privilege on objects in the data

dictionary. Also, HS_ADMIN_ROLE.

SELECT_CATALOG

_ROLE

SQL.BSQ Provides SELECT privilege on objects in the data

dictionary. Also, HS_ADMIN_ROLE.

RECOVERY_CATA

LOG_OWNER

CATALOG.SQL Provides privileges for owner of the recovery catalog.

Includes: CREATE SESSION, ALTER

SESSION, CREATE SYNONYM, CREATE
VIEW, CREATE DATABASE LINK, CREATE

TABLE,CREATE CLUSTER, CREATE

SEQUENCE, CREATE TRIGGER, and CREATE
PROCEDURE

HS_ADMIN_ROLE CATHS.SQL Used to protect access to the HS (Heterogeneous Services)
data dictionary tables (grants SELECT) and packages

(grants EXECUTE). It is granted

to SELECT_CATALOG_ROLEand EXECUTE_CATAL
OG_ROLE such that users with generic data dictionary

access also can access the HS data dictionary.

AQ_USER_ROLE CATQUEUE.SQ
L

Obsoleted, but kept mainly for release 8.0 compatibility.
Provides execute privilege

on DBMS_AQ and DBMS_AQIN.

AQ_ADMINISTRAT

OR_ROLE

CATQUEUE.SQ

L

Provides privileges to administer Advance Queuing.

Includes ENQUEUE ANY QUEUE, DEQUEUE ANY

QUEUE, and MANAGE ANY
QUEUE, SELECT privileges on AQ tables

andEXECUTE privileges on AQ packages.

SNMPAGENT CATSNMP.SQL This role is used by Enterprise Manager/Intelligent Agent.
Includes ANALYZE ANY and grants SELECT on various

views.

Creating a Role

You can create a role using the CREATE ROLE statement, but you must have the CREATE
ROLE system privilege to do so. Typically, only security administrators have this system privilege.

You must give each role you create a unique name among existing usernames and role names of the
database. Roles are not contained in the schema of any user. In a database that uses a multibyte

DBMS Lab Manual (NCS-552)

62

character set, Oracle recommends that each role name contain at least one single-byte character. If a

role name contains only multibyte characters, the encrypted role name/password combination is

considerably less secure.

The following statement creates the clerk role, which is authorized by the database using the

password bicentennial:

CREATE ROLE clerk IDENTIFIED BY bicentennial;

The IDENTIFIED BY clause specifies how the user must be authorized before the role can be enabled
for use by a specific user to which it has been granted. If this clause is not specified, or NOT

IDENTIFIED is specified, then no authorization is required when the role is enabled. Roles can be

specified to be authorized by:

 The database using a password

 An application using a specified package

 Externally by the operating system, network, or other external source

 Globally by an enterprise directory service

These authorizations are discussed in following sections.

Later, you can set or change the authorization method for a role using the ALTER ROLE statement.

The following statement alters the clerk role to specify that the user must have been authorized by an

external source before enabling the role:

ALTER ROLE clerk IDENTIFIED EXTERNALLY;

Role Authorization by an Application

The INDENTIFIED USING package_name clause lets you create an application role, which is a role
that can be enabled only by applications using an authorized package. Application developers do not

need to secure a role by embedding passwords inside applications. Instead, they can create an
application role and specify which PL/SQL package is authorized to enable the role.

The following example indicates that the role admin_role is an application role and the role can only

be enabled by any module defined inside the PL/SQL package hr.admin.

CREATE ROLE admin_role IDENTIFIED USING hr.admin;

When enabling the user's default roles at login as specified in the user's profile, no checking is
performed for application roles.

Role Authorization by an External Source

The following statement creates a role named accts_rec and requires that the user be authorized by an
external source before it can be enabled:

CREATE ROLE accts_rec IDENTIFIED EXTERNALLY;

DBMS Lab Manual (NCS-552)

63

Dropping Roles

In some cases, it may be appropriate to drop a role from the database. The security domains of all
users and roles granted a dropped role are immediately changed to reflect the absence of the dropped
role's privileges. All indirectly granted roles of the dropped role are also removed from affected

security domains. Dropping a role automatically removes the role from all users' default role lists.

Because the creation of objects is not dependent on the privileges received through a role, tables and
other objects are not dropped when a role is dropped.

You can drop a role using the SQL statement DROP ROLE. To drop a role, you must have the DROP
ANY ROLE system privilege or have been granted the role with the ADMIN OPTION.

The following statement drops the role CLERK:

DROP ROLE clerk;

Granting System Privileges and Roles

You can grant system privileges and roles to other users and roles using the GRANT statement. The

following privileges are required:

 To grant a system privilege, you must have been granted the system privilege with

the ADMIN OPTION or have been granted the GRANT ANY PRIVILEGE system privilege.

 To grant a role, you must have been granted the role with the ADMIN OPTION or have been

granted the GRANT ANY ROLE system privilege.

Note:

You cannot grant a roll that is IDENTIFIED GLOBALLY to anything. The

granting (and revoking) of global roles is controlled entirely by the enterprise

directory service.

The following statement grants the system privilege CREATE SESSION and the accts_pay role to the

user jward:

GRANT CREATE SESSION, accts_pay TO jward;

Granting the ADMIN OPTION

A user or role that is granted a privilege or role specifying the WITH ADMIN OPTION clause has
several expanded capabilities:

 The grantee can grant or revoke the system privilege or role to or from any user or other role

in the database. Users cannot revoke a role from themselves.

 The grantee can further grant the system privilege or role with the ADMIN OPTION.

 The grantee of a role can alter or drop the role.

In the following statement, the security administrator grants the new_dba role to michael:

GRANT new_dba TO michael WITH ADMIN OPTION;

DBMS Lab Manual (NCS-552)

64

The user michael cannot only use all of the privileges implicit in the new_dba role, but can grant,

revoke, or drop the new_dba role as deemed necessary. Because of these powerful capabilities,
exercise caution when granting system privileges or roles with the ADMIN OPTION. Such privileges

are usually reserved for a security administrator and rarely granted to other administrators or users of

the system.

When a user creates a role, the role is automatically granted to the creator with the ADMIN OPTION

Creating a New User with the GRANT Statement

Oracle allows you to create a new user with the GRANT statement. If you specify a password using
the IDENTIFIED BY clause, and the username/password does not exist in the database, a new user

with that username and password is created. The following example creates ssmith as a new user
while granting ssmith the CONNECT system privilege:

GRANT CONNECT TO ssmith IDENTIFIED BY p1q2r3;

Granting Object Privileges

You also use the GRANT statement to grant object privileges to roles and users. To grant an object
privilege, you must fulfill one of the following conditions:

 You own the object specified.

 You possess the GRANT ANY OBJECT PRIVILEGE system privilege that enables you to

grant and revoke privileges on behalf of the object owner.

 The WITH GRANT OPTION clause was specified when you were granted the object

privilege by its owner.

The following statement grants the SELECT, INSERT, and DELETE object privileges for all columns
of the emp table to the users jfee and tsmith:

GRANT SELECT, INSERT, DELETE ON emp TO jfee, tsmith;

To grant all object privileges on the salary view to the user jfee, use the ALL keyword, as shown in

the following example:

GRANT ALL ON salary TO jfee;

Specifying the GRANT OPTION

Specify WITH GRANT OPTION to enable the grantee to grant the object privileges to other users
and roles. The user whose schema contains an object is automatically granted all associated object

privileges with the GRANT OPTION. This special privilege allows the grantee several expanded
privileges:

 The grantee can grant the object privilege to any users in the database, with or without

the GRANT OPTION, or to any role in the database.

 If both of the following are true, the grantee can create views on the table and grant the

corresponding privileges on the views to any user or role in the database.

DBMS Lab Manual (NCS-552)

65

o The grantee receives object privileges for the table with the GRANT OPTION.

o The grantee has the CREATE VIEW or CREATE ANY VIEW system privilege.

The GRANT OPTION is not valid when granting an object privilege to a role. Oracle prevents the
propagation of object privileges through roles so that grantees of a role cannot propagate object

privileges received by means of roles.

Granting Object Privileges on Behalf of the Object Owner

The GRANT ANY OBJECT PRIVILEGE system privilege allows users to grant and revoke any
object privilege on behalf of the object owner. This provides a convenient means for database and
application administrators to grant access to objects in any schema without requiring that they connect

to the schema. This eliminates the need to maintain login credentials for schema owners so that they

can grant access to objects, and it reduces the number of connections required during configuration.

This system privilege is part of the Oracle supplied DBA role and is thus granted (with the ADMIN

OPTION) to any user connecting AS SYSDBA (user SYS). As with other system privileges,

the GRANT ANY OBJECT PRIVILEGE system privilege can only be granted by a user who
possesses the ADMIN OPTION.

When you exercise the GRANT ANY OBJECT PRIVILEGE system privilege to grant an object
privilege to a user, if you already possess the object privilege with the GRANT OPTION, then the

grant is performed in the usual way. In this case, you become the grantor of the grant. If you do not

possess the object privilege, then the object owner is shown as the grantor, even though you, with the
GRANT ANY OBJECTPRIVILEGE system privilege, actually performed the grant.

For example, consider the following. User adams possesses the GRANT ANY OBJECT

PRIVILEGE system privilege. He does not possess any other grant privileges. He issues the following
statement:

GRANT SELECT ON hr.employees TO blake WITH GRANT OPTION;

If you examine the DBA_TAB_PRIVS view, you will see that hr is shown as being the grantor of the

privilege:

SQL> SELECT GRANTEE, OWNER, GRANTOR, PRIVILEGE, GRANTABLE

 2> FROM DBA_TAB_PRIVS

 3> WHERE TABLE_NAME = 'EMPLOYEES' and OWNER = 'HR';

GRANTEE OWNER GRANTOR PRIVILEGE GRANTABLE
-------- ----- ------- ----------- ----------

BLAKE HR HR SELECT YES

Now assume that blake also has the GRANT ANY OBJECT PRIVILEGE system. He, issues the

following statement:

GRANT SELECT ON hr.employees TO clark;

DBMS Lab Manual (NCS-552)

66

In this case, when you again query the DBA_TAB_PRIVS view, you see that blake is shown as being

the grantor of the privilege:

GRANTEE OWNER GRANTOR PRIVILEGE GRANTABLE
-------- ----- -------- -------- ----------

BLAKE HR HR SELECT YES

CLARK HR BLAKE SELECT NO

This is because blake already possesses the SELECT privilege on hr.employees with the GRANT
OPTION.

Revoking System Privileges and Roles

You can revoke system privileges and roles using the SQL statement REVOKE.

Any user with the ADMIN OPTION for a system privilege or role can revoke the privilege or role

from any other database user or role. The revoker does not have to be the user that originally granted

the privilege or role. Users with GRANT ANY ROLE can revoke any role.

The following statement revokes the CREATE TABLE system privilege and the accts_rec role

from tsmith:

REVOKE CREATE TABLE, accts_rec FROM tsmith;

Revoking Object Privileges

The REVOKE statement is used to revoke object privileges. To revoke an object privilege, you must
fulfill one of the following conditions:

 You previously granted the object privilege to the user or role.

 You possess the GRANT ANY OBJECT PRIVILEGE system privilege that enables you to
grant and revoke privileges on behalf of the object owner.

You can only revoke the privileges that you, the grantor, directly authorized, not the grants made by
other users to whom you granted the GRANT OPTION. However, there is a cascading effect. The

object privilege grants propagated using the GRANT OPTION are revoked if a grantor's object

privilege is revoked.

Assuming you are the original grantor, the following statement revokes

the SELECT and INSERT privileges on the emp table from the users jfee and tsmith:

REVOKE SELECT, insert ON emp FROM jfee, tsmith;

Program No: 14

DBMS Lab Manual (NCS-552)

67

TITLE: MS ACCESS

14.1 Objective 14.2 Theory 14.3 Exercise

14.1 OBJECTIVE: learn to realize a data model as a relational database in Microsoft Access

14.2 THEORY AND CONCEPTS:
Microsoft Access is a database management system (DBMS) from Microsoft that combines the
relational Microsoft Jet Database Engine with a graphical user interface and software-development

tools. It is a member of the Microsoft Office suite of applications, included in the Professional and

higher editions or sold separately.
Microsoft Access stores data in its own format based on the Access Jet Database Engine. It can also

import or link directly to data stored in other applications and databases.

In Microsoft Access a database consists of one single file. The file contains all the tables of the
database, the relationships (the crow's feet), queries (computed tables), forms (user windows), and

many other things.

14.3 Exercise

Create the database:
1.Locate the Access program. Depending on the way the system is set up, you may find it under Pro-

grams -> Microsoft Access or Programs -> Micro-soft Office -> Microsoft Access.

2.In Access 97 and 2000: Open Access and ask for a "blank" database. In Access 2003: Open Access
and click the New icon (under the File menu). Then click Blank database in the help area to the far

right.
3.Access now asks where to store the new database. Select the folder you want and give the database

the name hotel (or hotel.mdb).

The screen now shows the database window.

Figure: The Access database window

Define a table:
2. Double click on Create table in Design view.

2. Fill in all the field lines according to the attributes in the guest table (see the figure). All the fields

https://en.wikipedia.org/wiki/Database_management_system

DBMS Lab Manual (NCS-552)

68

are of type Text, except the guestID which is of type AutoNumber.

Key fields
3. Right-click somewhere in the guestID line. Then select Primary Key. Access now shows that the

field is the key.

4. Close the window. Access asks you for the name of the table. Call it tblGuest.

Enter data:
1. Select the guest table in the database window. Click Open or just use Enter.

2. Enter the guests shown on the below Figure

Figure: Enter the Data in User mode
Close and reopen the database

1. Close the large Access window.

2. Find your database file (hotel.mdb) in the file fold-ers. Use Enter or double click to open it.

3. The file may not be safe. Do you want to open it? Your database is safe, so answer Open.

4. Unsafe expressions are not blocked. Do you want to block them? You want full freedom, so answer
No.

DBMS Lab Manual (NCS-552)

69

5. Access warns you one more time whether you want to open. Say Open or Yes.

Shortcut keys for data entry:
F2: Toggles between selecting the entire field and selecting a data entry point.

Shift+F2: Opens a small window with space for the entire field. Useful for entering long texts into a
field that is shown only partly in the table. How-ever, the text cannot be longer than you specified in

the table definition.
Alt+ArrowDown: Opens a combo box. Choose with the arrows and Enter.

DBMS Lab Manual (NCS-552)

70

Experiment Mapping with CO, PO, PSO

EX-1 PO1 PO8 PO9 PO10 PO11 PO12

CO 1 1 1 1 1 1 1 1 1 1 1 1

PO 3 3 3

 PSO1 PSO2 PSO3 PSO4

PSO 3 3

EX-2 PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12

CO 3 3 3 3 3 3 3 3 3 3 3 3

PO 3 3 3 3

 PSO1 PSO2 PSO3 PSO4

PSO 3 3

EX-3 PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12

CO 3 3 3 3 3 3 3 3 3 3 3 3

PO 3 3 3 3 3 3

 PSO1 PSO2 PSO3 PSO4

PSO 3 3

EX-4 PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12

CO 4 4 4 4 4 4 4 4 4 4 4 4

PO 3 3 3 3 3 3 3

 PSO1 PSO2 PSO3 PSO4

PSO 3 3

EX-5 PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12

CO 3 3 3 3 3 3 3 3 3 3 3 3

PO 3 3 3 3

 PSO1 PSO2 PSO3 PSO4

PSO 3 3

EX-6 PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12

CO 2 2 2 2 2 2 2 2 2 2 2 2

PO 3 3 3 3 3 3 3

 PSO1 PSO2 PSO3 PSO4

PSO 3 3 3 3

EX-7 PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12

CO 4 4 4 4 4 4 4 4 4 4 4 4

PO 3 3 3 3 3 3 3 3 3

 PSO1 PSO2 PSO3 PSO4

PSO 3 3 3

DBMS Lab Manual (NCS-552)

71

EX-8 PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12

CO 4 4 4 4 4 4 4 4 4 4 4 4

PO 3 3 3 3 3

 PSO1 PSO2 PSO3 PSO4

PSO 3 3

EX-9 PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12

CO 5 5 5 5 5 5 5 5 5 5 5 5

PO 3 3 3 3

 PSO1 PSO2 PSO3 PSO4

PSO 3 3

EX-10 PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12

CO 5 5 5 5 5 5 5 5 5 5 5 5

PO 3 3 3 3 3 3 3

 PSO1 PSO2 PSO3 PSO4

PSO 3 3

EX-11 PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12

CO 5 5 5 5 5 5 5 5 5 5 5 5

PO 3 3 3 3 3 3 3 3 3

 PSO1 PSO2 PSO3 PSO4

PSO 3 3 3

EX-12 PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12

CO 6 6 6 6 6 6 6 6 6 6 6 6

PO 3 3 3 3

 PSO1 PSO2 PSO3 PSO4

PSO 3 3 3

EX-13 PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12

PO 3 3 3 3 3 3 3 3

 PSO1 PSO2 PSO3 PSO4

PSO 3 3 3 3

EX-14 PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12

PO 3 3 3 3 3 3

 PSO1 PSO2 PSO3 PSO4

PSO 3 3 3 3

EX-15 PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12

PO 3 3 3 3 3 3 3 3 3 3 3 3

 PSO1 PSO2 PSO3 PSO4

PSO 3 3 3 3

DBMS Lab Manual (NCS-552)

72

